本文实例为大家分享了Python OpenCV图像直方图和反向投影的具体代码,供大家参考,具体内容如下
当我们想比较两张图片相似度的时候,可以使用这一节提到的技术
关于这两种技术的原理可以参考我上面贴的链接,下面是示例的代码:
0x01. 绘制直方图
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|
import cv2.cv as cv def drawGraph(ar,im, size): #Draw the histogram on the image minV, maxV, minloc, maxloc = cv.MinMaxLoc(ar) #Get the min and max value hpt = 0.9 * histsize for i in range (size): intensity = ar[i] * hpt / maxV #Calculate the intensity to make enter in the image cv.Line(im, (i,size), (i, int (size - intensity)),cv.Scalar( 255 , 255 , 255 )) #Draw the line i + = 1 #---- Gray image orig = cv.LoadImage( "img/lena.jpg" , cv.CV_8U) histsize = 256 #Because we are working on grayscale pictures which values within 0-255 hist = cv.CreateHist([histsize], cv.CV_HIST_ARRAY, [[ 0 ,histsize]], 1 ) cv.CalcHist([orig], hist) #Calculate histogram for the given grayscale picture histImg = cv.CreateMat(histsize, histsize, cv.CV_8U) #Image that will contain the graph of the repartition of values drawGraph(hist.bins, histImg, histsize) cv.ShowImage( "Original Image" , orig) cv.ShowImage( "Original Histogram" , histImg) #--------------------- #---- Equalized image imEq = cv.CloneImage(orig) cv.EqualizeHist(imEq, imEq) #Equlize the original image histEq = cv.CreateHist([histsize], cv.CV_HIST_ARRAY, [[ 0 ,histsize]], 1 ) cv.CalcHist([imEq], histEq) #Calculate histogram for the given grayscale picture eqImg = cv.CreateMat(histsize, histsize, cv.CV_8U) #Image that will contain the graph of the repartition of values drawGraph(histEq.bins, eqImg, histsize) cv.ShowImage( "Image Equalized" , imEq) cv.ShowImage( "Equalized HIstogram" , eqImg) #-------------------------------- cv.WaitKey( 0 ) |
0x02. 反向投影
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
import cv2.cv as cv im = cv.LoadImage( "img/lena.jpg" , cv.CV_8U) cv.SetImageROI(im, ( 1 , 1 , 30 , 30 )) histsize = 256 #Because we are working on grayscale pictures hist = cv.CreateHist([histsize], cv.CV_HIST_ARRAY, [[ 0 ,histsize]], 1 ) cv.CalcHist([im], hist) cv.NormalizeHist(hist, 1 ) # The factor rescale values by multiplying values by the factor _,max_value,_,_ = cv.GetMinMaxHistValue(hist) if max_value = = 0 : max_value = 1.0 cv.NormalizeHist(hist, 256 / max_value) cv.ResetImageROI(im) res = cv.CreateMat(im.height, im.width, cv.CV_8U) cv.CalcBackProject([im], res, hist) cv.Rectangle(im, ( 1 , 1 ), ( 30 , 30 ), ( 0 , 0 , 255 ), 2 , cv.CV_FILLED) cv.ShowImage( "Original Image" , im) cv.ShowImage( "BackProjected" , res) cv.WaitKey( 0 ) |
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/qq_26898461/article/details/50454528