本文实例为大家分享了Python OpenCV处理图像之滤镜和图像运算的具体代码,供大家参考,具体内容如下
0x01. 滤镜
喜欢自拍的人肯定都知道滤镜了,下面代码尝试使用一些简单的滤镜,包括图片的平滑处理、灰度化、二值化等:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
import cv2.cv as cv image = cv.LoadImage( 'img/lena.jpg' , cv.CV_LOAD_IMAGE_COLOR) #Load the image cv.ShowImage( "Original" , image) grey = cv.CreateImage((image.width ,image.height), 8 , 1 ) #8depth, 1 channel so grayscale cv.CvtColor(image, grey, cv.CV_RGBA2GRAY) #Convert to gray so act as a filter cv.ShowImage( 'Greyed' , grey) # 平滑变换 smoothed = cv.CloneImage(image) cv.Smooth(image,smoothed,cv.CV_MEDIAN) #Apply a smooth alogrithm with the specified algorithm cv.MEDIAN cv.ShowImage( "Smoothed" , smoothed) # 均衡处理 cv.EqualizeHist(grey, grey) #Work only on grayscaled pictures cv.ShowImage( 'Equalized' , grey) # 二值化处理 threshold1 = cv.CloneImage(grey) cv.Threshold(threshold1,threshold1, 100 , 255 , cv.CV_THRESH_BINARY) cv.ShowImage( "Threshold" , threshold1) threshold2 = cv.CloneImage(grey) cv.Threshold(threshold2,threshold2, 100 , 255 , cv.CV_THRESH_OTSU) cv.ShowImage( "Threshold 2" , threshold2) element_shape = cv.CV_SHAPE_RECT pos = 3 element = cv.CreateStructuringElementEx(pos * 2 + 1 , pos * 2 + 1 , pos, pos, element_shape) cv.Dilate(grey,grey,element, 2 ) #Replace a pixel value with the maximum value of neighboors #There is others like Erode which replace take the lowest value of the neighborhood #Note: The Structuring element is optionnal cv.ShowImage( "Dilated" , grey) cv.WaitKey( 0 ) |
0x02. HighGUI
OpenCV 内建了一套简单的 GUI 工具,方便我们在处理界面上编写一些控件,动态的改变输出:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
import cv2.cv as cv im = cv.LoadImage( "img/lena.jpg" , cv.CV_LOAD_IMAGE_GRAYSCALE) thresholded = cv.CreateImage(cv.GetSize(im), 8 , 1 ) def onChange(val): cv.Threshold(im, thresholded, val, 255 , cv.CV_THRESH_BINARY) cv.ShowImage( "Image" , thresholded) # 创建一个滑动条控件 onChange( 100 ) #Call here otherwise at startup. Show nothing until we move the trackbar cv.CreateTrackbar( "Thresh" , "Image" , 100 , 255 , onChange) #Threshold value arbitrarily set to 100 cv.WaitKey( 0 ) |
0x03. 选区操作
有事希望对图像中某一块区域进行变换等操作,就可以使用如下方式:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
import cv2.cv as cv im = cv.LoadImage( "img/lena.jpg" , 3 ) # 选择一块区域 cv.SetImageROI(im, ( 50 , 50 , 150 , 150 )) #Give the rectangle coordinate of the selected area # 变换操作 cv.Zero(im) #cv.Set(im, cv.RGB(100, 100, 100)) put the image to a given value # 解除选区 cv.ResetImageROI(im) # Reset the ROI cv.ShowImage( "Image" ,im) cv.WaitKey( 0 ) |
0x04. 运算
对于多张图片,我们可以进行一些运算操作(包括算数运算和逻辑运算),下面的代码将演示一些基本的运算操作:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
|
import cv2.cv as cv #or simply import cv im = cv.LoadImage( "img/lena.jpg" ) im2 = cv.LoadImage( "img/fruits-larger.jpg" ) cv.ShowImage( "Image1" , im) cv.ShowImage( "Image2" , im2) res = cv.CreateImage(cv.GetSize(im2), 8 , 3 ) # 加 cv.Add(im, im2, res) #Add every pixels together (black is 0 so low change and white overload anyway) cv.ShowImage( "Add" , res) # 减 cv.AbsDiff(im, im2, res) # Like minus for each pixel im(i) - im2(i) cv.ShowImage( "AbsDiff" , res) # 乘 cv.Mul(im, im2, res) #Multiplie each pixels (almost white) cv.ShowImage( "Mult" , res) # 除 cv.Div(im, im2, res) #Values will be low so the image will likely to be almost black cv.ShowImage( "Div" , res) # 与 cv.And(im, im2, res) #Bit and for every pixels cv.ShowImage( "And" , res) # 或 cv.Or(im, im2, res) # Bit or for every pixels cv.ShowImage( "Or" , res) # 非 cv.Not(im, res) # Bit not of an image cv.ShowImage( "Not" , res) # 异或 cv.Xor(im, im2, res) #Bit Xor cv.ShowImage( "Xor" , res) # 乘方 cv. Pow (im, res, 2 ) #Pow the each pixel with the given value cv.ShowImage( "Pow" , res) # 最大值 cv. Max (im, im2, res) #Maximum between two pixels #Same form Min MinS cv.ShowImage( "Max" ,res) cv.WaitKey( 0 ) |
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/qq_26898461/article/details/50454515