Summary
主要包括以下三种途径:
使用独立的函数;
使用torch.type()函数;
使用type_as(tesnor)将张量转换为给定类型的张量。
使用独立函数
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
import torch print (tensor) # torch.long() 将tensor投射为long类型 long_tensor = tensor. long () print (long_tensor) # torch.half()将tensor投射为半精度浮点类型 half_tensor = tensor.half() print (half_tensor) # torch.int()将该tensor投射为int类型 int_tensor = tensor. int () print (int_tensor) # torch.double()将该tensor投射为double类型 double_tensor = tensor.double() print (double_tensor) # torch.float()将该tensor投射为float类型 float_tensor = tensor. float () print (float_tensor) # torch.char()将该tensor投射为char类型 char_tensor = tensor.char() print (char_tensor) # torch.byte()将该tensor投射为byte类型 byte_tensor = tensor.byte() print (byte_tensor) # torch.short()将该tensor投射为short类型 short_tensor = tensor.short() print (short_tensor) |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
- 0.5841 - 1.6370 0.1353 0.6334 - 3.0761 - 0.2628 0.1245 0.8626 0.4095 - 0.3633 1.3605 0.5055 - 2.0090 0.8933 - 0.6267 [torch.FloatTensor of size 3x5 ] 0 - 1 0 0 - 3 0 0 0 0 0 1 0 - 2 0 0 [torch.LongTensor of size 3x5 ] - 0.5840 - 1.6367 0.1353 0.6333 - 3.0762 - 0.2627 0.1245 0.8628 0.4094 - 0.3633 1.3604 0.5054 - 2.0098 0.8936 - 0.6265 [torch.HalfTensor of size 3x5 ] 0 - 1 0 0 - 3 0 0 0 0 0 1 0 - 2 0 0 [torch.IntTensor of size 3x5 ] - 0.5841 - 1.6370 0.1353 0.6334 - 3.0761 - 0.2628 0.1245 0.8626 0.4095 - 0.3633 1.3605 0.5055 - 2.0090 0.8933 - 0.6267 [torch.DoubleTensor of size 3x5 ] - 0.5841 - 1.6370 0.1353 0.6334 - 3.0761 - 0.2628 0.1245 0.8626 0.4095 - 0.3633 1.3605 0.5055 - 2.0090 0.8933 - 0.6267 [torch.FloatTensor of size 3x5 ] 0 - 1 0 0 - 3 0 0 0 0 0 1 0 - 2 0 0 [torch.CharTensor of size 3x5 ] 0 255 0 0 253 0 0 0 0 0 1 0 254 0 0 [torch.ByteTensor of size 3x5 ] 0 - 1 0 0 - 3 0 0 0 0 0 1 0 - 2 0 0 [torch.ShortTensor of size 3x5 ] |
其中,torch.Tensor、torch.rand、torch.randn 均默认生成 torch.FloatTensor型 :
1
2
3
4
5
6
7
8
9
10
|
import torch tensor = torch.Tensor( 3 , 5 ) assert isinstance (tensor, torch.FloatTensor) tensor = torch.rand( 3 , 5 ) assert isinstance (tensor, torch.FloatTensor) tensor = torch.randn( 3 , 5 ) assert isinstance (tensor, torch.FloatTensor) |
使用torch.type()函数
1
|
type (new_type = None , async = False ) |
1
2
3
4
5
6
7
|
import torch tensor = torch.randn( 3 , 5 ) print (tensor) int_tensor = tensor. type (torch.IntTensor) print (int_tensor) |
1
2
3
4
5
6
7
8
9
10
|
- 0.4449 0.0332 0.5187 0.1271 2.2303 1.3961 - 0.1542 0.8498 - 0.3438 - 0.2834 - 0.5554 0.1684 1.5216 2.4527 0.0379 [torch.FloatTensor of size 3x5 ] 0 0 0 0 2 1 0 0 0 0 0 0 1 2 0 [torch.IntTensor of size 3x5 ] |
使用type_as(tesnor)将张量转换为给定类型的张量
1
2
3
4
5
6
7
|
import torch tensor_1 = torch.FloatTensor( 5 ) tensor_2 = torch.IntTensor([ 10 , 20 ]) tensor_1 = tensor_1.type_as(tensor_2) assert isinstance (tensor_1, torch.IntTensor) |
以上这篇pytorch: tensor类型的构建与相互转换实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/JNingWei/article/details/79849600