如下所示:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
# -*- coding: utf-8 -*- # @Time : 2018/1/17 16:37 # @Author : Zhiwei Zhong # @Site : # @File : Numpy_Pytorch.py # @Software: PyCharm import torch import numpy as np np_data = np.arange( 6 ).reshape(( 2 , 3 )) # numpy 转为 pytorch格式 torch_data = torch.from_numpy(np_data) print ( '\n numpy' , np_data, '\n torch' , torch_data, ) ''' numpy [[0 1 2] [3 4 5]] torch 0 1 2 3 4 5 [torch.LongTensor of size 2x3] ''' # torch 转为numpy tensor2array = torch_data.numpy() print (tensor2array) """ [[0 1 2] [3 4 5]] """ # 运算符 # abs 、 add 、和numpy类似 data = [[ 1 , 2 ], [ 3 , 4 ]] tensor = torch.FloatTensor(data) # 转为32位浮点数,torch接受的都是Tensor的形式,所以运算前先转化为Tensor print ( '\n numpy' , np.matmul(data, data), '\n torch' , torch.mm(tensor, tensor) # torch.dot()是点乘 ) ''' numpy [[ 7 10] [15 22]] torch 7 10 15 22 [torch.FloatTensor of size 2x2] ''' |
以上这篇浅谈pytorch和Numpy的区别以及相互转换方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/qq_34535410/article/details/79088952