法一:
循环打印
模板
1
2
|
for (x, y) in zip (tf.global_variables(), sess.run(tf.global_variables())): print '\n' , x, y |
实例
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
# coding=utf-8 import tensorflow as tf def func(in_put, layer_name, is_training = True ): with tf.variable_scope(layer_name, reuse = tf.AUTO_REUSE): bn = tf.contrib.layers.batch_norm(inputs = in_put, decay = 0.9 , is_training = is_training, updates_collections = None ) return bn def main(): with tf.Graph().as_default(): # input_x input_x = tf.placeholder(dtype = tf.float32, shape = [ 1 , 4 , 4 , 1 ]) import numpy as np i_p = np.random.uniform(low = 0 , high = 255 , size = [ 1 , 4 , 4 , 1 ]) # outputs output = func(input_x, 'my' , is_training = True ) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) t = sess.run(output, feed_dict = {input_x:i_p}) # 法一: 循环打印 for (x, y) in zip (tf.global_variables(), sess.run(tf.global_variables())): print '\n' , x, y if __name__ = = "__main__" : main() |
1
2
3
4
5
6
7
8
9
|
2017 - 09 - 29 10 : 10 : 22.714213 : I tensorflow / core / common_runtime / gpu / gpu_device.cc: 1052 ] Creating TensorFlow device ( / device:GPU: 0 ) - > (device: 0 , name: GeForce GTX 1070 , pci bus id : 0000 : 01 : 00.0 , compute capability: 6.1 ) <tf.Variable 'my/BatchNorm/beta:0' shape = ( 1 ,) dtype = float32_ref> [ 0. ] <tf.Variable 'my/BatchNorm/moving_mean:0' shape = ( 1 ,) dtype = float32_ref> [ 13.46412563 ] <tf.Variable 'my/BatchNorm/moving_variance:0' shape = ( 1 ,) dtype = float32_ref> [ 452.62246704 ] Process finished with exit code 0 |
法二:
指定变量名打印
模板
1
|
print 'my/BatchNorm/beta:0' , (sess.run( 'my/BatchNorm/beta:0' )) |
实例
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
|
# coding=utf-8 import tensorflow as tf def func(in_put, layer_name, is_training = True ): with tf.variable_scope(layer_name, reuse = tf.AUTO_REUSE): bn = tf.contrib.layers.batch_norm(inputs = in_put, decay = 0.9 , is_training = is_training, updates_collections = None ) return bn def main(): with tf.Graph().as_default(): # input_x input_x = tf.placeholder(dtype = tf.float32, shape = [ 1 , 4 , 4 , 1 ]) import numpy as np i_p = np.random.uniform(low = 0 , high = 255 , size = [ 1 , 4 , 4 , 1 ]) # outputs output = func(input_x, 'my' , is_training = True ) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) t = sess.run(output, feed_dict = {input_x:i_p}) # 法二: 指定变量名打印 print 'my/BatchNorm/beta:0' , (sess.run( 'my/BatchNorm/beta:0' )) print 'my/BatchNorm/moving_mean:0' , (sess.run( 'my/BatchNorm/moving_mean:0' )) print 'my/BatchNorm/moving_variance:0' , (sess.run( 'my/BatchNorm/moving_variance:0' )) if __name__ = = "__main__" : main() |
1
2
3
4
5
6
7
|
2017 - 09 - 29 10 : 12 : 41.374055 : I tensorflow / core / common_runtime / gpu / gpu_device.cc: 1052 ] Creating TensorFlow device ( / device:GPU: 0 ) - > (device: 0 , name: GeForce GTX 1070 , pci bus id : 0000 : 01 : 00.0 , compute capability: 6.1 ) my / BatchNorm / beta: 0 [ 0. ] my / BatchNorm / moving_mean: 0 [ 8.08649635 ] my / BatchNorm / moving_variance: 0 [ 368.03442383 ] Process finished with exit code 0 |
以上这篇tensorflow 打印内存中的变量方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/JNingWei/article/details/78131214