最近两周由于忙于个人项目,一直未发言了,实在是太荒凉了。。。。,上周由于项目,见到Python的应用极为广泛,用起来也特别顺手,于是小编也开始着手学习Python,…下面我就汇报下今天的学习成果吧
小编运行环境unbuntu 14.0.4
首先我们先安装一下Python呗,我用的2.7,其实特别简单,一行指令就OK
sudo apt-get install python-dev
一般安装系统的时候其实python已经自带了,这步基本可以不用做,OK,我们继续往下走吧,安装python-opencv ,稍后我们需要用到opencv的库,一行指令即可,这也是小编特别喜欢linux的原因:
sudo apt-get install python-opencv
完成之后我们开始操作吧,首先同样的我们打开摄像头露个脸呗,不多说,上代码, vim pythonpractice.py 打开vim,copy以下代码即可(友情提示 python是有严格的缩进的,下面我都是四个空格缩进,各位不要复制错了):lo
1
2
3
4
5
6
7
8
9
10
11
12
|
lmport cv2 import numpy as np #添加模块和矩阵模块 cap = cv2.VideoCapture( 0 ) #打开摄像头,若打开本地视频,同opencv一样,只需将0换成( "×××.avi" ) while ( 1 ): # get a frame ret, frame = cap.read() # show a frame cv2.imshow( "capture" , frame) if cv2.waitKey( 1 ) & 0xFF = = ord ( 'q' ): break cap.release() cv2.destroyAllWindows() #释放并销毁窗口 |
保存退出
python pythonpractice.py
小脸蛋即可出现在你的屏幕上了,下面稍微添加几行有意思的代码吧,实现蓝色背景检测,我这有瓶蓝色脉动,正好做个小实验。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
import cv2 import numpy as np cap = cv2.VideoCapture( 0 ) # set blue thresh lower_blue = np.array([ 78 , 43 , 46 ]) upper_blue = np.array([ 110 , 255 , 255 ]) while ( 1 ): # get a frame and show ret, frame = cap.read() cv2.imshow( 'Capture' , frame) # change to hsv model hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) # get mask mask = cv2.inRange(hsv, lower_blue, upper_blue) cv2.imshow( 'Mask' , mask) # detect blue res = cv2.bitwise_and(frame, frame, mask = mask) cv2.imshow( 'Result' , res) if cv2.waitKey( 1 ) & 0xFF = = ord ( 'q' ): breakcap.release() cv2.destroyAllWindows() |
同样python pythonpractice.py 运行一下,可以把手机换成蓝色背景检测以下,下面时间就交给各位理解了,代码很简单,只有简单的几行程序。
下面有个复杂点颜色识别的代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
|
#!/usr/bin/python # -*- coding: utf-8 -*- import cv2 import numpy as np import time readlower = np.array([ 156 , 179 , 144 ]) readupper = np.array([ 180 , 255 , 255 ]) readlower1 = np.array([ 0 , 128 , 146 ]) readupper2 = np.array([ 5 , 255 , 255 ]) lowerarry = [[readlower,readupper, 'red' ],[readlower1,readupper2, 'red1' ]] capture = cv2.VideoCapture( '4.mp4' ) while True : ret,frame = capture.read() print frame.shape frame = cv2.resize(frame,( 640 , 480 )) if ret = = False : print ( "video is erro" ) #cv2.imshow('xiaorun',frame) hsv = cv2.cvtColor(frame,cv2.COLOR_BGR2HSV) for colormin,colermax,name in lowerarry: mask = cv2.inRange(hsv,colormin,colermax) #res = cv2.bitwise_and(frame, frame, mask=mask) #mask=cv2.erode(mask,None,iterations=1) mask = cv2.dilate(mask, None ,iterations = 25 ) ret, binary = cv2.threshold(mask, 15 , 255 , cv2.THRESH_BINARY) cv2.imshow( 'result' ,binary) kernel = cv2.getStructuringElement(cv2.MORPH_RECT, ( 21 , 7 )) closed = cv2.morphologyEx(binary, cv2.MORPH_CLOSE, kernel) cv2.imshow( 'closed' , closed) #erode = cv2.erode(closed, None, iterations=4) #cv2.imshow('erode', erode) dilate = cv2.dilate(closed, None , iterations = 50 ) cv2.imshow( 'dilate' , dilate) _,contours, hierarchy = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) #res=_.copy() for con in contours: x, y, w, h = cv2.boundingRect(con) # 将轮廓分解为识别对象的左上角坐标和宽、高 # 在图像上画上矩形(图片、左上角坐标、右下角坐标、颜色、线条宽度) cv2.rectangle(frame, (x, y), (x + w, y + h), ( 255 , 0 , 0 ), 3 ) cv2.imshow( 'res' ,frame) key = cv2.waitKey( 1 ) if key = = ord ( 'q' ): break |
小编只是想说明以下,一定要学以致用,任何一种编程语言都是倒腾两天就直接上手的,按部就班的学习语法,那样不知何时才能出师了,祝各位玩得high在机器视觉上
以上这篇利用python打开摄像头及颜色检测方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/xiao__run/article/details/76339803