求两个正整数的最大公约数
思路:这是一个很基本的问题,最常见的就是两种方法,辗转相除法和辗转相减法。通式分别为 f(x, y) = f(y, x%y), f(x, y) = f(y, x - y) (x >=y > 0)。根据通式写出算法不难,这里就不给出了。这里给出《编程之美》上的算法,主要是为了减少迭代的次数。
对于x和y,如果y = k * y1, x= k * x1,那么f(x, y) = k * f(x1, y1)。另外,如果x = p * x1,假设p为素数,并且y % p != 0,那么f(x, y) = f(p * x1, y) = f(x1, y)。取p = 2。
参考代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
//函数功能: 求最大公约数 //函数参数: x,y为两个数 //返回值: 最大公约数 int gcd_solution1( int x, int y) { if (y == 0) return x; else if (x < y) return gcd_solution1(y, x); else { if (x&1) //x是奇数 { if (y&1) //y是奇数 return gcd_solution1(y, x-y); else //y是偶数 return gcd_solution1(x, y>>1); } else //x是偶数 { if (y&1) //y是奇数 return gcd_solution1(x>>1, y); else //y是偶数 return gcd_solution1(x>>1, y>>1) << 1; } } } |
求最小公倍数:
最常用的是辗转相除法,有两整数a和b:
① a%b得余数c
② 若c=0,则b即为两数的最大公约数
③ 若c≠0,则a=b,b=c,再回去执行①
下面非递归版本:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
int gcd_solution2( int x, int y) { int result = 1; while (y) { int t = x; if (x&1) { if (y&1) { x = y; y = t % y; } else y >>= 1; } else { if (y&1) x >>= 1; else { x >>= 1; y >>= 1; result <<= 1; } } } return result * x; } |