逻辑回归模型
逻辑回归是应用非常广泛的一个分类机器学习算法,它将数据拟合到一个logit函数(或者叫做logistic函数)中,从而能够完成对事件发生的概率进行预测。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
|
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data #下载好的mnist数据集存在F:/mnist/data/中 mnist = input_data.read_data_sets( 'F:/mnist/data/' ,one_hot = True ) print (mnist.train.num_examples) print (mnist.test.num_examples) trainimg = mnist.train.images trainlabel = mnist.train.labels testimg = mnist.test.images testlabel = mnist.test.labels print ( type (trainimg)) print (trainimg.shape,) print (trainlabel.shape,) print (testimg.shape,) print (testlabel.shape,) nsample = 5 randidx = np.random.randint(trainimg.shape[ 0 ],size = nsample) for i in randidx: curr_img = np.reshape(trainimg[i,:],( 28 , 28 )) curr_label = np.argmax(trainlabel[i,:]) plt.matshow(curr_img,cmap = plt.get_cmap( 'gray' )) plt.title(" "+str(i)+" th Training Data "+" label is " + str (curr_label)) print (" "+str(i)+" th Training Data "+" label is " + str (curr_label)) plt.show() x = tf.placeholder( "float" ,[ None , 784 ]) y = tf.placeholder( "float" ,[ None , 10 ]) W = tf.Variable(tf.zeros([ 784 , 10 ])) b = tf.Variable(tf.zeros([ 10 ])) # actv = tf.nn.softmax(tf.matmul(x,W) + b) #计算损失 cost = tf.reduce_mean( - tf.reduce_sum(y * tf.log(actv),reduction_indices = 1 )) #学习率 learning_rate = 0.01 #随机梯度下降 optm = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) #求1位置索引值 对比预测值索引与label索引是否一样,一样返回True pred = tf.equal(tf.argmax(actv, 1 ),tf.argmax(y, 1 )) #tf.cast把True和false转换为float类型 0,1 #把所有预测结果加在一起求精度 accr = tf.reduce_mean(tf.cast(pred, "float" )) init = tf.global_variables_initializer() """ #测试代码 sess = tf.InteractiveSession() arr = np.array([[31,23,4,24,27,34],[18,3,25,4,5,6],[4,3,2,1,5,67]]) #返回数组的维数 2 print(tf.rank(arr).eval()) #返回数组的行列数 [3 6] print(tf.shape(arr).eval()) #返回数组中每一列中最大元素的索引[0 0 1 0 0 2] print(tf.argmax(arr,0).eval()) #返回数组中每一行中最大元素的索引[5 2 5] print(tf.argmax(arr,1).eval()) J""" #把所有样本迭代50次 training_epochs = 50 #每次迭代选择多少样本 batch_size = 100 display_step = 5 sess = tf.Session() sess.run(init) #循环迭代 for epoch in range (training_epochs): avg_cost = 0 num_batch = int (mnist.train.num_examples / batch_size) for i in range (num_batch): batch_xs,batch_ys = mnist.train.next_batch(batch_size) sess.run(optm,feed_dict = {x:batch_xs,y:batch_ys}) feeds = {x:batch_xs,y:batch_ys} avg_cost + = sess.run(cost,feed_dict = feeds) / num_batch if epoch % display_step = = 0 : feeds_train = {x:batch_xs,y:batch_ys} feeds_test = {x:mnist.test.images,y:mnist.test.labels} train_acc = sess.run(accr,feed_dict = feeds_train) test_acc = sess.run(accr,feed_dict = feeds_test) #每五个epoch打印一次信息 print ( "Epoch:%03d/%03d cost:%.9f train_acc:%.3f test_acc: %.3f" % (epoch,training_epochs,avg_cost,train_acc,test_acc)) print ( "Done" ) |
程序训练结果如下:
1
2
3
4
5
6
7
8
9
10
11
|
Epoch: 000 / 050 cost: 1.177228655 train_acc: 0.800 test_acc: 0.855 Epoch: 005 / 050 cost: 0.440933891 train_acc: 0.890 test_acc: 0.894 Epoch: 010 / 050 cost: 0.383387268 train_acc: 0.930 test_acc: 0.905 Epoch: 015 / 050 cost: 0.357281335 train_acc: 0.930 test_acc: 0.909 Epoch: 020 / 050 cost: 0.341473956 train_acc: 0.890 test_acc: 0.913 Epoch: 025 / 050 cost: 0.330586549 train_acc: 0.920 test_acc: 0.915 Epoch: 030 / 050 cost: 0.322370980 train_acc: 0.870 test_acc: 0.916 Epoch: 035 / 050 cost: 0.315942993 train_acc: 0.940 test_acc: 0.916 Epoch: 040 / 050 cost: 0.310728854 train_acc: 0.890 test_acc: 0.917 Epoch: 045 / 050 cost: 0.306357428 train_acc: 0.870 test_acc: 0.918 Done |
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/Missayaaa/article/details/80063512