本代码实现了朴素贝叶斯分类器(假设了条件独立的版本),常用于垃圾邮件分类,进行了拉普拉斯平滑。
关于朴素贝叶斯算法原理可以参考博客中原理部分的博文。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
|
#!/usr/bin/python # -*- coding: utf-8 -*- from math import log from numpy import * import operator import matplotlib import matplotlib.pyplot as plt from os import listdir def loadDataSet(): postingList = [[ 'my' , 'dog' , 'has' , 'flea' , 'problems' , 'help' , 'please' ], [ 'maybe' , 'not' , 'take' , 'him' , 'to' , 'dog' , 'park' , 'stupid' ], [ 'my' , 'dalmation' , 'is' , 'so' , 'cute' , 'I' , 'love' , 'him' ], [ 'stop' , 'posting' , 'stupid' , 'worthless' , 'garbage' ], [ 'mr' , 'licks' , 'ate' , 'my' , 'steak' , 'how' , 'to' , 'stop' , 'him' ], [ 'quit' , 'buying' , 'worthless' , 'dog' , 'food' , 'stupid' ]] classVec = [ 0 , 1 , 0 , 1 , 0 , 1 ] return postingList,classVec def createVocabList(dataSet): vocabSet = set ([]) #create empty set for document in dataSet: vocabSet = vocabSet | set (document) #union of the two sets return list (vocabSet) def setOfWords2Vec(vocabList, inputSet): returnVec = [ 0 ] * len (vocabList) for word in inputSet: if word in vocabList: returnVec[vocabList.index(word)] = 1 else : print "the word: %s is not in my Vocabulary!" % word return returnVec def trainNB0(trainMatrix,trainCategory): #训练模型 numTrainDocs = len (trainMatrix) numWords = len (trainMatrix[ 0 ]) pAbusive = sum (trainCategory) / float (numTrainDocs) p0Num = ones(numWords); p1Num = ones(numWords) #拉普拉斯平滑 p0Denom = 0.0 + 2.0 ; p1Denom = 0.0 + 2.0 #拉普拉斯平滑 for i in range (numTrainDocs): if trainCategory[i] = = 1 : p1Num + = trainMatrix[i] p1Denom + = sum (trainMatrix[i]) else : p0Num + = trainMatrix[i] p0Denom + = sum (trainMatrix[i]) p1Vect = log(p1Num / p1Denom) #用log()是为了避免概率乘积时浮点数下溢 p0Vect = log(p0Num / p0Denom) return p0Vect,p1Vect,pAbusive def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1): p1 = sum (vec2Classify * p1Vec) + log(pClass1) p0 = sum (vec2Classify * p0Vec) + log( 1.0 - pClass1) if p1 > p0: return 1 else : return 0 def bagOfWords2VecMN(vocabList, inputSet): returnVec = [ 0 ] * len (vocabList) for word in inputSet: if word in vocabList: returnVec[vocabList.index(word)] + = 1 return returnVec def testingNB(): #测试训练结果 listOPosts, listClasses = loadDataSet() myVocabList = createVocabList(listOPosts) trainMat = [] for postinDoc in listOPosts: trainMat.append(setOfWords2Vec(myVocabList, postinDoc)) p0V, p1V, pAb = trainNB0(array(trainMat), array(listClasses)) testEntry = [ 'love' , 'my' , 'dalmation' ] thisDoc = array(setOfWords2Vec(myVocabList, testEntry)) print testEntry, 'classified as: ' , classifyNB(thisDoc, p0V, p1V, pAb) testEntry = [ 'stupid' , 'garbage' ] thisDoc = array(setOfWords2Vec(myVocabList, testEntry)) print testEntry, 'classified as: ' , classifyNB(thisDoc, p0V, p1V, pAb) def textParse(bigString): # 长字符转转单词列表 import re listOfTokens = re.split(r '\W*' , bigString) return [tok.lower() for tok in listOfTokens if len (tok) > 2 ] def spamTest(): #测试垃圾文件 需要数据 docList = []; classList = []; fullText = [] for i in range ( 1 , 26 ): wordList = textParse( open ( 'email/spam/%d.txt' % i).read()) docList.append(wordList) fullText.extend(wordList) classList.append( 1 ) wordList = textParse( open ( 'email/ham/%d.txt' % i).read()) docList.append(wordList) fullText.extend(wordList) classList.append( 0 ) vocabList = createVocabList(docList) trainingSet = range ( 50 ); testSet = [] for i in range ( 10 ): randIndex = int (random.uniform( 0 , len (trainingSet))) testSet.append(trainingSet[randIndex]) del (trainingSet[randIndex]) trainMat = []; trainClasses = [] for docIndex in trainingSet: trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex])) trainClasses.append(classList[docIndex]) p0V, p1V, pSpam = trainNB0(array(trainMat), array(trainClasses)) errorCount = 0 for docIndex in testSet: wordVector = bagOfWords2VecMN(vocabList, docList[docIndex]) if classifyNB(array(wordVector), p0V, p1V, pSpam) ! = classList[docIndex]: errorCount + = 1 print "classification error" , docList[docIndex] print 'the error rate is: ' , float (errorCount) / len (testSet) listOPosts,listClasses = loadDataSet() myVocabList = createVocabList(listOPosts) print myVocabList, '\n' # print setOfWords2Vec(myVocabList,listOPosts[0]),'\n' trainMat = [] for postinDoc in listOPosts: trainMat.append(setOfWords2Vec(myVocabList,postinDoc)) print trainMat p0V,p1V,pAb = trainNB0(trainMat,listClasses) print pAb print p0V, '\n' ,p1V testingNB() |
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/qq_35083093/article/details/79107514