源起:
1.我要做交叉验证,需要每个训练集和测试集都保持相同的样本分布比例,直接用sklearn提供的KFold并不能满足这个需求。
2.将生成的交叉验证数据集保存成CSV文件,而不是直接用sklearn训练分类模型。
3.在编码过程中有一的误区需要注意:
这个sklearn官方给出的文档
1
2
3
4
5
6
7
8
9
|
>>> import numpy as np >>> from sklearn.model_selection import KFold >>> X = [ "a" , "b" , "c" , "d" ] >>> kf = KFold(n_splits = 2 ) >>> for train, test in kf.split(X): ... print ( "%s %s" % (train, test)) [ 2 3 ] [ 0 1 ] [ 0 1 ] [ 2 3 ] |
我之前犯的一个错误是将train,test理解成原数据集分割成子数据集之后的子数据集索引。而实际上,它就是原始数据集本身的样本索引。
源码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
|
# -*- coding:utf-8 -*- # 得到交叉验证数据集,保存成CSV文件 # 输入是一个包含正常恶意标签的完整数据集,在读数据的时候分开保存到datasetBenign,datasetMalicious # 分别对两个数据集进行KFold,最后合并保存 from sklearn.model_selection import KFold import csv def writeInFile(benignKFTrain, benignKFTest, maliciousKFTrain, maliciousKFTest, i, datasetBenign, datasetMalicious): newTrainFilePath = "E:\\hadoopExperimentResult\\5KFold\\AllDataSetIIR10\\dataset\\ImbalancedAllTraffic-train-%s.csv" % i newTestFilePath = "E:\\hadoopExperimentResult\\5KFold\\AllDataSetIIR10\\dataset\\IImbalancedAllTraffic-test-%s.csv" % i newTrainFile = open (newTrainFilePath, "wb" ) # wb 为防止空行 newTestFile = open (newTestFilePath, "wb" ) writerTrain = csv.writer(newTrainFile) writerTest = csv.writer(newTestFile) for index in benignKFTrain: writerTrain.writerow(datasetBenign[index]) for index in benignKFTest: writerTest.writerow(datasetBenign[index]) for index in maliciousKFTrain: writerTrain.writerow(datasetMalicious[index]) for index in maliciousKFTest: writerTest.writerow(datasetMalicious[index]) newTrainFile.close() newTestFile.close() def getKFoldDataSet(datasetPath): # CSV读取文件 # 开始从文件中读取全部的数据集 datasetFile = file (datasetPath, 'rb' ) datasetBenign = [] datasetMalicious = [] readerDataset = csv.reader(datasetFile) for line in readerDataset: if len (line) > 1 : curLine = [] curLine.append( float (line[ 0 ])) curLine.append( float (line[ 1 ])) curLine.append( float (line[ 2 ])) curLine.append( float (line[ 3 ])) curLine.append( float (line[ 4 ])) curLine.append( float (line[ 5 ])) curLine.append( float (line[ 6 ])) curLine.append(line[ 7 ]) if line[ 7 ] = = "benign" : datasetBenign.append(curLine) else : datasetMalicious.append(curLine) # 交叉验证分割数据集 K = 5 kf = KFold(n_splits = K) benignKFTrain = []; benignKFTest = [] for train,test in kf.split(datasetBenign): benignKFTrain.append(train) benignKFTest.append(test) maliciousKFTrain = []; maliciousKFTest = [] for train,test in kf.split(datasetMalicious): maliciousKFTrain.append(train) maliciousKFTest.append(test) for i in range (K): print "======================== " + str (i) + " ========================" print benignKFTrain[i], benignKFTest[i] print maliciousKFTrain[i],maliciousKFTest[i] writeInFile(benignKFTrain[i], benignKFTest[i], maliciousKFTrain[i], maliciousKFTest[i], i, datasetBenign, datasetMalicious) datasetFile.close() if __name__ = = "__main__" : getKFoldDataSet(r "E:\hadoopExperimentResult\5KFold\AllDataSetIIR10\dataset\ImbalancedAllTraffic-10.csv" ) |
以上这篇Python sklearn KFold 生成交叉验证数据集的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/Ichimaru_Gin_/article/details/79455578