本文实例讲述了Python实现的简单线性回归算法。分享给大家供大家参考,具体如下:
用python实现R的线性模型(lm)中一元线性回归的简单方法,使用R的women示例数据,R的运行结果:
> summary(fit)
Call:
lm(formula = weight ~ height, data = women)
Residuals:
Min 1Q Median 3Q Max
-1.7333 -1.1333 -0.3833 0.7417 3.1167
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -87.51667 5.93694 -14.74 1.71e-09 ***
height 3.45000 0.09114 37.85 1.09e-14 ***
---
Signif. codes: 0 ‘***' 0.001 ‘**' 0.01 ‘*' 0.05 ‘.' 0.1 ‘ ' 1
Residual standard error: 1.525 on 13 degrees of freedom
Multiple R-squared: 0.991, Adjusted R-squared: 0.9903
F-statistic: 1433 on 1 and 13 DF, p-value: 1.091e-14
python实现的功能包括:
- 计算pearson相关系数
- 使用最小二乘法计算回归系数
- 计算拟合优度判定系数R2R2
- 计算估计标准误差Se
- 计算显著性检验的F和P值
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
|
import numpy as np import scipy.stats as ss class Lm: """简单一元线性模型,计算回归系数、拟合优度的判定系数和 估计标准误差,显著性水平""" def __init__( self , data_source, separator): self .beta = np.matrix(np.zeros( 2 )) self .yhat = np.matrix(np.zeros( 2 )) self .r2 = 0.0 self .se = 0.0 self .f = 0.0 self .msr = 0.0 self .mse = 0.0 self .p = 0.0 data_mat = np.genfromtxt(data_source, delimiter = separator) self .xarr = data_mat[:, : - 1 ] self .yarr = data_mat[:, - 1 ] self .ybar = np.mean( self .yarr) self .dfd = len ( self .yarr) - 2 # 自由度n-2 return # 计算协方差 @staticmethod def cov_custom(x, y): result = sum ((x - np.mean(x)) * (y - np.mean(y))) / ( len (x) - 1 ) return result # 计算相关系数 @staticmethod def corr_custom(x, y): return Lm.cov_custom(x, y) / (np.std(x, ddof = 1 ) * np.std(y, ddof = 1 )) # 计算回归系数 def simple_regression( self ): xmat = np.mat( self .xarr) ymat = np.mat( self .yarr).T xtx = xmat.T * xmat if np.linalg.det(xtx) = = 0.0 : print ( 'Can not resolve the problem' ) return self .beta = np.linalg.solve(xtx, xmat.T * ymat) # xtx.I * (xmat.T * ymat) self .yhat = (xmat * self .beta).flatten().A[ 0 ] return # 计算拟合优度的判定系数R方,即相关系数corr的平方 def r_square( self ): y = np.mat( self .yarr) ybar = np.mean(y) self .r2 = np. sum (( self .yhat - ybar) * * 2 ) / np. sum ((y.A - ybar) * * 2 ) return # 计算估计标准误差 def estimate_deviation( self ): y = np.array( self .yarr) self .se = np.sqrt(np. sum ((y - self .yhat) * * 2 ) / self .dfd) return # 显著性检验F def sig_test( self ): ybar = np.mean( self .yarr) self .msr = np. sum (( self .yhat - ybar) * * 2 ) self .mse = np. sum (( self .yarr - self .yhat) * * 2 ) / self .dfd self .f = self .msr / self .mse self .p = ss.f.sf( self .f, 1 , self .dfd) return def summary( self ): self .simple_regression() corr_coe = Lm.corr_custom( self .xarr[:, - 1 ], self .yarr) self .r_square() self .estimate_deviation() self .sig_test() print ( 'The Pearson\'s correlation coefficient: %.3f' % corr_coe) print ( 'The Regression Coefficient: %s' % self .beta.flatten().A[ 0 ]) print ( 'R square: %.3f' % self .r2) print ( 'The standard error of estimate: %.3f' % self .se) print ( 'F-statistic: %d on %s and %s DF, p-value: %.3e' % ( self .f, 1 , self .dfd, self .p)) |
python执行结果:
The Regression Coefficient: [-87.51666667 3.45 ]
R square: 0.991
The standard error of estimate: 1.525
F-statistic: 1433 on 1 and 13 DF, p-value: 1.091e-14
其中求回归系数时用矩阵转置求逆再用numpy
内置的解线性方程组的方法是最快的:
1
2
3
4
5
6
7
|
a = np.mat(women.xarr); b = np.mat(women.yarr).T timeit (a.I * b) 99.9 µs ± 941 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each) timeit ata.I * (a.T * b) 64.9 µs ± 717 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each) timeit np.linalg.solve(ata, a.T * b) 15.1 µs ± 126 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each) |
希望本文所述对大家Python程序设计有所帮助。
原文链接:https://blog.csdn.net/qq_35753140/article/details/78699748