写了个多层感知器,用bp梯度下降更新,拟合正弦曲线,效果凑合。
python" id="highlighter_728048">
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
|
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt def sigmod(z): return 1.0 / ( 1.0 + np.exp( - z)) class mlp( object ): def __init__( self , lr = 0.1 , lda = 0.0 , te = 1e - 5 , epoch = 100 , size = none): self .learningrate = lr self .lambda_ = lda self .thresholderror = te self .maxepoch = epoch self .size = size self .w = [] self .b = [] self .init() def init( self ): for i in xrange ( len ( self .size) - 1 ): self .w.append(np.mat(np.random.uniform( - 0.5 , 0.5 , size = ( self .size[i + 1 ], self .size[i])))) self .b.append(np.mat(np.random.uniform( - 0.5 , 0.5 , size = ( self .size[i + 1 ], 1 )))) def forwardpropagation( self , item = none): a = [item] for windex in xrange ( len ( self .w)): a.append(sigmod( self .w[windex] * a[ - 1 ] + self .b[windex])) """ print "-----------------------------------------" for i in a: print i.shape, print for i in self.w: print i.shape, print for i in self.b: print i.shape, print print "-----------------------------------------" """ return a def backpropagation( self , label = none, a = none): # print "backpropagation--------------------begin" delta = [(a[ - 1 ] - label) * a[ - 1 ] * ( 1.0 - a[ - 1 ])] for i in xrange ( len ( self .w) - 1 ): abc = np.multiply(a[ - 2 - i], 1 - a[ - 2 - i]) cba = np.multiply( self .w[ - 1 - i].t * delta[ - 1 ], abc) delta.append(cba) """ print "++++++++++++++delta++++++++++++++++++++" print "len(delta):", len(delta) for ii in delta: print ii.shape, print "\n=======================================" """ for j in xrange ( len (delta)): ads = delta[j] * a[ - 2 - j].t # print self.w[-1-j].shape, ads.shape, self.b[-1-j].shape, delta[j].shape self .w[ - 1 - j] = self .w[ - 1 - j] - self .learningrate * (ads + self .lambda_ * self .w[ - 1 - j]) self .b[ - 1 - j] = self .b[ - 1 - j] - self .learningrate * delta[j] """print "=======================================1234" for ij in self.b: print ij.shape, print """ # print "backpropagation--------------------finish" error = 0.5 * (a[ - 1 ] - label) * * 2 return error def train( self , input_ = none, target = none, show = 10 ): for ep in xrange ( self .maxepoch): error = [] for itemindex in xrange (input_.shape[ 1 ]): a = self .forwardpropagation(input_[:, itemindex]) e = self .backpropagation(target[:, itemindex], a) error.append(e[ 0 , 0 ]) tt = sum (error) / len (error) if tt < self .thresholderror: print "finish {0}: " . format (ep), tt return elif ep % show = = 0 : print "epoch {0}: " . format (ep), tt def sim( self , inp = none): return self .forwardpropagation(item = inp)[ - 1 ] if __name__ = = "__main__" : tt = np.arange( 0 , 6.28 , 0.01 ) labels = np.zeros_like(tt) print tt.shape """ for po in xrange(tt.shape[0]): if tt[po] < 4: labels[po] = 0.0 elif 8 > tt[po] >= 4: labels[po] = 0.25 elif 12 > tt[po] >= 8: labels[po] = 0.5 elif 16 > tt[po] >= 12: labels[po] = 0.75 else: labels[po] = 1.0 """ tt = np.mat(tt) labels = np.sin(tt) * 0.5 + 0.5 labels = np.mat(labels) model = mlp(lr = 0.2 , lda = 0.0 , te = 1e - 5 , epoch = 500 , size = [ 1 , 6 , 6 , 6 , 1 ]) print tt.shape, labels.shape print len (model.w), len (model.b) print model.train(input_ = tt, target = labels, show = 10 ) sims = [model.sim(tt[:, idx])[ 0 , 0 ] for idx in xrange (tt.shape[ 1 ])] xx = tt.tolist()[ 0 ] plt.figure() plt.plot(xx, labels.tolist()[ 0 ], xx, sims, 'r' ) plt.show() |
效果图:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/u013781175/article/details/48313903