一、原理
模拟水波纹效果,最常见的是sine或者cosn的函数,周期性变化,贴近自然。
当水波纹中中间开始向四周扩散的时候,一般都是慢慢的失去能量,振幅也是越来越小,所以程序要模拟这个过程时候,要加上一个能量递减因子。然后用公式 y = a*sine(bx + c)来表示波纹公式。
二、程序实现
最重要的一步是计算水波纹的振幅。在任意一点确定水波的中心位置,可以是鼠标随机选取,对半径范围内的像素位置实现水波生成,然后转换为位置,对位置实现浮点数取整,然后使用适当的插值算法,本例使用双线性插值。
三、程序效果
四、滤镜完全源代码
这次我写了些中文注解,不给源代码的博文不是好博文
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
|
package com.gloomyfish.filter.study; import java.awt.image.bufferedimage; public class waterfilter extends abstractbufferedimageop { private float wavelength = 16 ; private float amplitude = 10 ; private float phase = 0 ; private float centrex = 0 .5f; private float centrey = 0 .5f; private float radius = 50 ; private float radius2 = 0 ; private float icentrex; private float icentrey; public waterfilter() { } @override public bufferedimage filter(bufferedimage src, bufferedimage dest) { int width = src.getwidth(); int height = src.getheight(); if ( dest == null ) dest = createcompatibledestimage( src, null ); int [] inpixels = new int [width*height]; int [] outpixels = new int [width*height]; getrgb( src, 0 , 0 , width, height, inpixels ); icentrex = width * centrex; icentrey = height * centrey; if ( radius == 0 ) radius = math.min(icentrex, icentrey); radius2 = radius*radius; int index = 0 ; float [] out = new float [ 2 ]; for ( int row= 0 ; row<height; row++) { for ( int col= 0 ; col<width; col++) { index = row * width + col; // 获取水波的扩散位置,最重要的一步 generatewaterripples(col, row, out); int srcx = ( int )math.floor( out[ 0 ] ); int srcy = ( int )math.floor( out[ 1 ] ); float xweight = out[ 0 ]-srcx; float yweight = out[ 1 ]-srcy; int nw, ne, sw, se; // 获取周围四个像素,插值用, if ( srcx >= 0 && srcx < width- 1 && srcy >= 0 && srcy < height- 1 ) { // easy case, all corners are in the image int i = width*srcy + srcx; nw = inpixels[i]; ne = inpixels[i+ 1 ]; sw = inpixels[i+width]; se = inpixels[i+width+ 1 ]; } else { // some of the corners are off the image nw = getpixel( inpixels, srcx, srcy, width, height ); ne = getpixel( inpixels, srcx+ 1 , srcy, width, height ); sw = getpixel( inpixels, srcx, srcy+ 1 , width, height ); se = getpixel( inpixels, srcx+ 1 , srcy+ 1 , width, height ); } // 取得对应的振幅位置p(x, y)的像素,使用双线性插值 /*if(xweight >=0 || yweight >= 0) { outpixels[index] = imagemath.bilinearinterpolate(xweight, yweight, nw, ne, sw, se); } else { outpixels[index] = inpixels[index]; }*/ outpixels[index] = imagemath.bilinearinterpolate(xweight, yweight, nw, ne, sw, se); } } setrgb( dest, 0 , 0 , width, height, outpixels ); return dest; } private int getpixel( int [] pixels, int x, int y, int width, int height) { if (x < 0 || x >= width || y < 0 || y >= height) { return 0 ; // 有点暴力啦,懒得管啦 } return pixels[ y*width+x ]; } protected void generatewaterripples( int x, int y, float [] out) { float dx = x-icentrex; float dy = y-icentrey; float distance2 = dx*dx + dy*dy; // 确定 water ripple的半径,如果在半径之外,就直接获取原来位置,不用计算迁移量 if (distance2 > radius2) { out[ 0 ] = x; out[ 1 ] = y; } else { // 如果在radius半径之内,计算出来 float distance = ( float )math.sqrt(distance2); // 计算改点振幅 float amount = amplitude * ( float )math.sin(distance / wavelength * imagemath.two_pi - phase); // 计算能量损失, amount *= (radius-distance)/radius; // 计算能量损失, if ( distance != 0 ) amount *= wavelength/distance; // 得到water ripple 最终迁移位置 out[ 0 ] = x + dx*amount; out[ 1 ] = y + dy*amount; } } } |
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/jia20003/article/details/13159535