Python OpenCV存储图像使用的是Numpy存储,所以可以将Numpy当做图像类型操作,操作之前还需进行类型转换,转换到int8类型
1
2
3
4
5
6
7
8
9
|
import cv2 import numpy as np # 使用numpy方式创建一个二维数组 img = np.ones(( 100 , 100 )) # 转换成int8类型 img = np.int8(img) # 颜色空间转换,单通道转换成多通道, 可选可不选 img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) cv2.imwrite( "demo.jpg" , img) |
补充知识:Python中读取图片并转化为numpy.ndarray()数据的6种方式
方式: 返回类型
OpenCV np.ndarray
PIL PIL.JpegImagePlugin.JpegImageFile
keras.preprocessing.image PIL.JpegImagePlugin.JpegImageFile
Skimage.io np.ndarray
matplotlib.pyplot np.ndarray
matplotlib.image np.ndarray
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
|
import numpy as np import cv2 from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img from PIL import Image import skimage.io as io import matplotlib.pyplot as plt import matplotlib.image as mpig ''' 方式: 返回类型 OpenCV np.ndarray PIL PIL.JpegImagePlugin.JpegImageFile keras.preprocessing.image PIL.JpegImagePlugin.JpegImageFile Skimage.io np.ndarray matplotlib.pyplot np.ndarray matplotlib.image np.ndarray ''' imagePath = "E:/DataSet/test1/trainSet/bus/300.jpg" ''' 方式一:使用OpenCV ''' img1 = cv2.imread(imagePath) print ( "img1:" ,img1.shape) print ( "img1:" , type (img1)) print ( "-" * 10 ) ''' 方式二:使用PIL ''' img2 = Image. open (imagePath) print ( "img2:" ,img2) print ( "img2:" , type (img2)) #转换成np.ndarray格式 img2 = np.array(img2) print ( "img2:" ,img2.shape) print ( "img2:" , type (img2)) print ( "-" * 10 ) ''' 方式三:使用keras.preprocessing.image ''' img3 = load_img(imagePath) print ( "img3:" ,img3) print ( "img3:" , type (img3)) #转换成np.ndarray格式,使用np.array(),或者使用keras里的img_to_array() #使用np.array() #img3=np.array(img2) #使用keras里的img_to_array() img3 = img_to_array(img3) print ( "img3:" ,img3.shape) print ( "img3:" , type (img3)) print ( "-" * 10 ) ''' 方式四:使用Skimage.io ''' img4 = io.imread(imagePath) print ( "img4:" ,img4.shape) print ( "img4:" , type (img4)) print ( "-" * 10 ) ''' 方式五:使用matplotlib.pyplot ''' img5 = plt.imread(imagePath) print ( "img5:" ,img5.shape) print ( "img5:" , type (img5)) print ( "-" * 10 ) ''' 方式六:使用matplotlib.image ''' img6 = mpig.imread(imagePath) print ( "img6:" ,img6.shape) print ( "img6:" , type (img6)) print ( "-" * 10 ) |
运行结果:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
Using TensorFlow backend. img1: ( 256 , 384 , 3 ) img1: < class 'numpy.ndarray' > - - - - - - - - - - img2: <PIL.JpegImagePlugin.JpegImageFile image mode = RGB size = 384x256 at 0x249608A8C50 > img2: < class 'PIL.JpegImagePlugin.JpegImageFile' > img2: ( 256 , 384 , 3 ) img2: < class 'numpy.ndarray' > - - - - - - - - - - img3: <PIL.JpegImagePlugin.JpegImageFile image mode = RGB size = 384x256 at 0x2496B5A23C8 > img3: < class 'PIL.JpegImagePlugin.JpegImageFile' > img3: ( 256 , 384 , 3 ) img3: < class 'numpy.ndarray' > - - - - - - - - - - img4: ( 256 , 384 , 3 ) img4: < class 'numpy.ndarray' > - - - - - - - - - - img5: ( 256 , 384 , 3 ) img5: < class 'numpy.ndarray' > - - - - - - - - - - img6: ( 256 , 384 , 3 ) img6: < class 'numpy.ndarray' > - - - - - - - - - - |
以上这篇Python OpenCV中的numpy与图像类型转换操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/qq_31261509/article/details/94383575