算法流程:
- 将图像转换为灰度图像
- 利用Sobel滤波器求出 海森矩阵 (Hessian matrix) :
- 将高斯滤波器分别作用于Ix²、Iy²、IxIy
- 计算每个像素的 R= det(H) - k(trace(H))²。det(H)表示矩阵H的行列式,trace表示矩阵H的迹。通常k的取值范围为[0.04,0.16]。
- 满足 R>=max(R) * th 的像素点即为角点。th常取0.1。
Harris算法实现:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
|
import cv2 as cv import numpy as np import matplotlib.pyplot as plt # Harris corner detection def Harris_corner(img): ## Grayscale def BGR2GRAY(img): gray = 0.2126 * img[..., 2 ] + 0.7152 * img[..., 1 ] + 0.0722 * img[..., 0 ] gray = gray.astype(np.uint8) return gray ## Sobel def Sobel_filtering(gray): # get shape H, W = gray.shape # sobel kernel sobely = np.array((( 1 , 2 , 1 ), ( 0 , 0 , 0 ), ( - 1 , - 2 , - 1 )), dtype = np.float32) sobelx = np.array((( 1 , 0 , - 1 ), ( 2 , 0 , - 2 ), ( 1 , 0 , - 1 )), dtype = np.float32) # padding tmp = np.pad(gray, ( 1 , 1 ), 'edge' ) # prepare Ix = np.zeros_like(gray, dtype = np.float32) Iy = np.zeros_like(gray, dtype = np.float32) # get differential for y in range (H): for x in range (W): Ix[y, x] = np.mean(tmp[y : y + 3 , x : x + 3 ] * sobelx) Iy[y, x] = np.mean(tmp[y : y + 3 , x : x + 3 ] * sobely) Ix2 = Ix * * 2 Iy2 = Iy * * 2 Ixy = Ix * Iy return Ix2, Iy2, Ixy # gaussian filtering def gaussian_filtering(I, K_size = 3 , sigma = 3 ): # get shape H, W = I.shape ## gaussian I_t = np.pad(I, (K_size / / 2 , K_size / / 2 ), 'edge' ) # gaussian kernel K = np.zeros((K_size, K_size), dtype = np. float ) for x in range (K_size): for y in range (K_size): _x = x - K_size / / 2 _y = y - K_size / / 2 K[y, x] = np.exp( - (_x * * 2 + _y * * 2 ) / ( 2 * (sigma * * 2 ))) K / = (sigma * np.sqrt( 2 * np.pi)) K / = K. sum () # filtering for y in range (H): for x in range (W): I[y,x] = np. sum (I_t[y : y + K_size, x : x + K_size] * K) return I # corner detect def corner_detect(gray, Ix2, Iy2, Ixy, k = 0.04 , th = 0.1 ): # prepare output image out = np.array((gray, gray, gray)) out = np.transpose(out, ( 1 , 2 , 0 )) # get R R = (Ix2 * Iy2 - Ixy * * 2 ) - k * ((Ix2 + Iy2) * * 2 ) # detect corner out[R > = np. max (R) * th] = [ 255 , 0 , 0 ] out = out.astype(np.uint8) return out # 1. grayscale gray = BGR2GRAY(img) # 2. get difference image Ix2, Iy2, Ixy = Sobel_filtering(gray) # 3. gaussian filtering Ix2 = gaussian_filtering(Ix2, K_size = 3 , sigma = 3 ) Iy2 = gaussian_filtering(Iy2, K_size = 3 , sigma = 3 ) Ixy = gaussian_filtering(Ixy, K_size = 3 , sigma = 3 ) # 4. corner detect out = corner_detect(gray, Ix2, Iy2, Ixy) return out # Read image img = cv.imread( "../qiqiao.jpg" ).astype(np.float32) # Harris corner detection out = Harris_corner(img) cv.imwrite( "out.jpg" , out) cv.imshow( "result" , out) cv.waitKey( 0 ) cv.destroyAllWindows() |
实验结果:
原图:
Harris角点检测算法检测结果:
以上就是python 实现Harris角点检测算法的详细内容,更多关于python Harris角点检测算法的资料请关注服务器之家其它相关文章!
原文链接:https://www.cnblogs.com/wojianxin/p/12574909.html