示例:《电影类型分类》
获取数据来源
电影名称 | 打斗次数 | 接吻次数 | 电影类型 |
---|---|---|---|
California Man | 3 | 104 | Romance |
He's Not Really into Dudes | 8 | 95 | Romance |
Beautiful Woman | 1 | 81 | Romance |
Kevin Longblade | 111 | 15 | Action |
Roob Slayer 3000 | 99 | 2 | Action |
Amped II | 88 | 10 | Action |
Unknown | 18 | 90 | unknown |
数据显示:肉眼判断电影类型unknown是什么
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
from matplotlib import pyplot as plt # 用来正常显示中文标签 plt.rcParams[ "font.sans-serif" ] = [ "SimHei" ] # 电影名称 names = [ "California Man" , "He's Not Really into Dudes" , "Beautiful Woman" , "Kevin Longblade" , "Robo Slayer 3000" , "Amped II" , "Unknown" ] # 类型标签 labels = [ "Romance" , "Romance" , "Romance" , "Action" , "Action" , "Action" , "Unknown" ] colors = [ "darkblue" , "red" , "green" ] colorDict = {label: color for (label, color) in zip ( set (labels), colors)} print (colorDict) # 打斗次数,接吻次数 X = [ 3 , 8 , 1 , 111 , 99 , 88 , 18 ] Y = [ 104 , 95 , 81 , 15 , 2 , 10 , 88 ] plt.title( "通过打斗次数和接吻次数判断电影类型" , fontsize = 18 ) plt.xlabel( "电影中打斗镜头出现的次数" , fontsize = 16 ) plt.ylabel( "电影中接吻镜头出现的次数" , fontsize = 16 ) # 绘制数据 for i in range ( len (X)): # 散点图绘制 plt.scatter(X[i], Y[i], color = colorDict[labels[i]]) # 每个点增加描述信息 for i in range ( 0 , 7 ): plt.text(X[i] + 2 , Y[i] - 1 , names[i], fontsize = 14 ) plt.show() |
问题分析:根据已知信息分析电影类型unknown是什么
核心思想:
未标记样本的类别由距离其最近的K个邻居的类别决定
距离度量:
一般距离计算使用欧式距离(用勾股定理计算距离),也可以采用曼哈顿距离(水平上和垂直上的距离之和)、余弦值和相似度(这是距离的另一种表达方式)。相比于上述距离,马氏距离更为精确,因为它能考虑很多因素,比如单位,由于在求协方差矩阵逆矩阵的过程中,可能不存在,而且若碰见3维及3维以上,求解过程中极其复杂,故可不使用马氏距离
知识扩展
- 马氏距离概念:表示数据的协方差距离
- 方差:数据集中各个点到均值点的距离的平方的平均值
- 标准差:方差的开方
- 协方差cov(x, y):E表示均值,D表示方差,x,y表示不同的数据集,xy表示数据集元素对应乘积组成数据集
cov(x, y) = E(xy) - E(x)*E(y)
cov(x, x) = D(x)
cov(x1+x2, y) = cov(x1, y) + cov(x2, y)
cov(ax, by) = abcov(x, y)
- 协方差矩阵:根据维度组成的矩阵,假设有三个维度,a,b,c
∑ij = [cov(a, a) cov(a, b) cov(a, c) cov(b, a) cov(b,b) cov(b, c) cov(c, a) cov(c, b) cov(c, c)]
算法实现:欧氏距离
编码实现
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
|
# 自定义实现 mytest1.py import numpy as np # 创建数据集 def createDataSet(): features = np.array([[ 3 , 104 ], [ 8 , 95 ], [ 1 , 81 ], [ 111 , 15 ], [ 99 , 2 ], [ 88 , 10 ]]) labels = [ "Romance" , "Romance" , "Romance" , "Action" , "Action" , "Action" ] return features, labels def knnClassify(testFeature, trainingSet, labels, k): """ KNN算法实现,采用欧式距离 :param testFeature: 测试数据集,ndarray类型,一维数组 :param trainingSet: 训练数据集,ndarray类型,二维数组 :param labels: 训练集对应标签,ndarray类型,一维数组 :param k: k值,int类型 :return: 预测结果,类型与标签中元素一致 """ dataSetsize = trainingSet.shape[ 0 ] """ 构建一个由dataSet[i] - testFeature的新的数据集diffMat diffMat中的每个元素都是dataSet中每个特征与testFeature的差值(欧式距离中差) """ testFeatureArray = np.tile(testFeature, (dataSetsize, 1 )) diffMat = testFeatureArray - trainingSet # 对每个差值求平方 sqDiffMat = diffMat * * 2 # 计算dataSet中每个属性与testFeature的差的平方的和 sqDistances = sqDiffMat. sum (axis = 1 ) # 计算每个feature与testFeature之间的欧式距离 distances = sqDistances * * 0.5 """ 排序,按照从小到大的顺序记录distances中各个数据的位置 如distance = [5, 9, 0, 2] 则sortedStance = [2, 3, 0, 1] """ sortedDistances = distances.argsort() # 选择距离最小的k个点 classCount = {} for i in range (k): voteiLabel = labels[ list (sortedDistances).index(i)] classCount[voteiLabel] = classCount.get(voteiLabel, 0 ) + 1 # 对k个结果进行统计、排序,选取最终结果,将字典按照value值从大到小排序 sortedclassCount = sorted (classCount.items(), key = lambda x: x[ 1 ], reverse = True ) return sortedclassCount[ 0 ][ 0 ] testFeature = np.array([ 100 , 200 ]) features, labels = createDataSet() res = knnClassify(testFeature, features, labels, 3 ) print (res) # 使用python包实现 mytest2.py from sklearn.neighbors import KNeighborsClassifier from .mytest1 import createDataSet features, labels = createDataSet() k = 5 clf = KNeighborsClassifier(k_neighbors = k) clf.fit(features, labels) # 样本值 my_sample = [[ 18 , 90 ]] res = clf.predict(my_sample) print (res) |
示例:《交友网站匹配效果预测》
数据来源:略
数据显示
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
|
import pandas as pd import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D # 数据加载 def loadDatingData( file ): datingData = pd.read_table( file , header = None ) datingData.columns = [ "FlightDistance" , "PlaytimePreweek" , "IcecreamCostPreweek" , "label" ] datingTrainData = np.array(datingData[[ "FlightDistance" , "PlaytimePreweek" , "IcecreamCostPreweek" ]]) datingTrainLabel = np.array(datingData[ "label" ]) return datingData, datingTrainData, datingTrainLabel # 3D图显示数据 def dataView3D(datingTrainData, datingTrainLabel): plt.figure( 1 , figsize = ( 8 , 3 )) plt.subplot( 111 , projection = "3d" ) plt.scatter(np.array([datingTrainData[x][ 0 ] for x in range ( len (datingTrainLabel)) if datingTrainLabel[x] = = "smallDoses" ]), np.array([datingTrainData[x][ 1 ] for x in range ( len (datingTrainLabel)) if datingTrainLabel[x] = = "smallDoses" ]), np.array([datingTrainData[x][ 2 ] for x in range ( len (datingTrainLabel)) if datingTrainLabel[x] = = "smallDoses" ]), c = "red" ) plt.scatter(np.array([datingTrainData[x][ 0 ] for x in range ( len (datingTrainLabel)) if datingTrainLabel[x] = = "didntLike" ]), np.array([datingTrainData[x][ 1 ] for x in range ( len (datingTrainLabel)) if datingTrainLabel[x] = = "didntLike" ]), np.array([datingTrainData[x][ 2 ] for x in range ( len (datingTrainLabel)) if datingTrainLabel[x] = = "didntLike" ]), c = "green" ) plt.scatter(np.array([datingTrainData[x][ 0 ] for x in range ( len (datingTrainLabel)) if datingTrainLabel[x] = = "largeDoses" ]), np.array([datingTrainData[x][ 1 ] for x in range ( len (datingTrainLabel)) if datingTrainLabel[x] = = "largeDoses" ]), np.array([datingTrainData[x][ 2 ] for x in range ( len (datingTrainLabel)) if datingTrainLabel[x] = = "largeDoses" ]), c = "blue" ) plt.xlabel( "飞行里程数" , fontsize = 16 ) plt.ylabel( "视频游戏耗时百分比" , fontsize = 16 ) plt.clabel( "冰淇凌消耗" , fontsize = 16 ) plt.show() datingData, datingTrainData, datingTrainLabel = loadDatingData(FILEPATH1) datingView3D(datingTrainData, datingTrainLabel) |
问题分析:抽取数据集的前10%在数据集的后90%进行测试
编码实现
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
|
# 自定义方法实现 import pandas as pd import numpy as np # 数据加载 def loadDatingData( file ): datingData = pd.read_table( file , header = None ) datingData.columns = [ "FlightDistance" , "PlaytimePreweek" , "IcecreamCostPreweek" , "label" ] datingTrainData = np.array(datingData[[ "FlightDistance" , "PlaytimePreweek" , "IcecreamCostPreweek" ]]) datingTrainLabel = np.array(datingData[ "label" ]) return datingData, datingTrainData, datingTrainLabel # 数据归一化 def autoNorm(datingTrainData): # 获取数据集每一列的最值 minValues, maxValues = datingTrainData. min ( 0 ), datingTrainData. max ( 0 ) diffValues = maxValues - minValues # 定义形状和datingTrainData相似的最小值矩阵和差值矩阵 m = datingTrainData.shape( 0 ) minValuesData = np.tile(minValues, (m, 1 )) diffValuesData = np.tile(diffValues, (m, 1 )) normValuesData = (datingTrainData - minValuesData) / diffValuesData return normValuesData # 核心算法实现 def KNNClassifier(testData, trainData, trainLabel, k): m = trainData.shape( 0 ) testDataArray = np.tile(testData, (m, 1 )) diffDataArray = (testDataArray - trainData) * * 2 sumDataArray = diffDataArray. sum (axis = 1 ) * * 0.5 # 对结果进行排序 sumDataSortedArray = sumDataArray.argsort() classCount = {} for i in range (k): labelName = trainLabel[ list (sumDataSortedArray).index(i)] classCount[labelName] = classCount.get(labelName, 0 ) + 1 classCount = sorted (classCount.items(), key = lambda x: x[ 1 ], reversed = True ) return classCount[ 0 ][ 0 ] # 数据测试 def datingTest( file ): datingData, datingTrainData, datingTrainLabel = loadDatingData( file ) normValuesData = autoNorm(datingTrainData) errorCount = 0 ratio = 0.10 total = datingTrainData.shape( 0 ) numberTest = int (total * ratio) for i in range (numberTest): res = KNNClassifier(normValuesData[i], normValuesData[numberTest:m], datingTrainLabel, 5 ) if res ! = datingTrainLabel[i]: errorCount + = 1 print ( "The total error rate is : {}\n" . format (error / float (numberTest))) if __name__ = = "__main__" : FILEPATH = "./datingTestSet1.txt" datingTest(FILEPATH) # python 第三方包实现 import pandas as pd import numpy as np from sklearn.neighbors import KNeighborsClassifier if __name__ = = "__main__" : FILEPATH = "./datingTestSet1.txt" datingData, datingTrainData, datingTrainLabel = loadDatingData(FILEPATH) normValuesData = autoNorm(datingTrainData) errorCount = 0 ratio = 0.10 total = normValuesData.shape[ 0 ] numberTest = int (total * ratio) k = 5 clf = KNeighborsClassifier(n_neighbors = k) clf.fit(normValuesData[numberTest:total], datingTrainLabel[numberTest:total]) for i in range (numberTest): res = clf.predict(normValuesData[i].reshape( 1 , - 1 )) if res ! = datingTrainLabel[i]: errorCount + = 1 print ( "The total error rate is : {}\n" . format (errorCount / float (numberTest))) |
以上就是python实现KNN近邻算法的详细内容,更多关于python实现KNN近邻算法的资料请关注服务器之家其它相关文章!
原文链接:https://www.cnblogs.com/aitiknowledge/p/12668844.html