我就废话不多说了,大家还是直接看代码吧~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
def sq2(x,e): e = e #误差范围 low = 0 high = max (x, 1.0 ) #处理大于 0 小于 1 的数 guess = (low + high) / 2.0 ctr = 1 while abs (guess * * 2 - x) > e and ctr< = 1000 : if guess * * 2 < x: low = guess else : high = guess guess = (low + high) / 2.0 ctr + = 1 print (guess) |
补充:数值计算方法:二分法求解方程的根(伪代码 python c/c++)
数值计算方法:
二分法求解方程的根
伪代码
1
2
3
4
5
6
7
8
9
10
11
12
|
fun ( input x) return x^ 2 + x - 6 newton ( input a, input b, input e) / / a是区间下界,b是区间上界,e是精确度 x < - (a + b) / 2 if abs (b - 1 ) < e: return x else : if fun(a) * fun(b) < 0 : return newton(a, x, e) else : return newton(x, b, e) |
c/c++:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
#include <iostream> #include <cmath> using namespace std; double fun ( double x); double newton ( double a, double b, double e); int main() { cout << newton(-5,0,0.5e-5); return 0; } double fun( double x) { return pow (x,2)+x-6; } double newton ( double a, double b, double e) { double x; x = (a + b)/2; cout << x << endl; if ( abs (b-a) < e) return x; else if (fun(a)*fun(x) < 0) return newton(a,x,e); else return newton(x,b,e); } |
python:
1
2
3
4
5
6
7
8
9
10
11
12
|
def fun(x): return x * * 2 + x - 6 def newton(a,b,e): x = (a + b) / 2.0 if abs (b - a) < e: return x else : if fun(a) * fun(x) < 0 : return newton(a, x, e) else : return newton(x, b, e) print newton( - 5 , 0 , 5e - 5 ) |
以上为个人经验,希望能给大家一个参考,也希望大家多多支持服务器之家。如有错误或未考虑完全的地方,望不吝赐教。
原文链接:https://blog.csdn.net/sharkandshark/article/details/83625839