本文实例为大家分享了python实现K折交叉验证的具体代码,供大家参考,具体内容如下
用KNN算法训练iris数据,并使用K折交叉验证方法找出最优的K值
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
|
import numpy as np from sklearn import datasets from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import KFold # 主要用于K折交叉验证 # 导入iris数据集 iris = datasets.load_iris() X = iris.data y = iris.target print (X.shape,y.shape) # 定义想要搜索的K值,这里定义8个不同的值 ks = [ 1 , 3 , 5 , 7 , 9 , 11 , 13 , 15 ] # 进行5折交叉验证,KFold返回的是每一折中训练数据和验证数据的index # 假设数据样本为:[1,3,5,6,11,12,43,12,44,2],总共10个样本 # 则返回的kf的格式为(前面的是训练数据,后面的验证集): # [0,1,3,5,6,7,8,9],[2,4] # [0,1,2,4,6,7,8,9],[3,5] # [1,2,3,4,5,6,7,8],[0,9] # [0,1,2,3,4,5,7,9],[6,8] # [0,2,3,4,5,6,8,9],[1,7] kf = KFold(n_splits = 5 , random_state = 2001 , shuffle = True ) # 保存当前最好的k值和对应的准确率 best_k = ks[ 0 ] best_score = 0 # 循环每一个k值 for k in ks: curr_score = 0 for train_index,valid_index in kf.split(X): # 每一折的训练以及计算准确率 clf = KNeighborsClassifier(n_neighbors = k) clf.fit(X[train_index],y[train_index]) curr_score = curr_score + clf.score(X[valid_index],y[valid_index]) # 求一下5折的平均准确率 avg_score = curr_score / 5 if avg_score > best_score: best_k = k best_score = avg_score print ( "current best score is :%.2f" % best_score, "best k:%d" % best_k) print ( "after cross validation, the final best k is :%d" % best_k) |
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/d1240673769/article/details/103483845