heapq 模块提供了堆算法。heapq是一种子节点和父节点排序的树形数据结构。这个模块提供heap[k] <= heap[2*k+1] and heap[k] <= heap[2*k+2]。为了比较不存在的元素被人为是无限大的。heap最小的元素总是[0]。
打印 heapq 类型
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
import math import random from cStringIO import StringIO def show_tree(tree, total_width = 36 , fill = ' ' ): output = StringIO() last_row = - 1 for i, n in enumerate (tree): if i: row = int (math.floor(math.log(i + 1 , 2 ))) else : row = 0 if row ! = last_row: output.write( '\n' ) columns = 2 * * row col_width = int (math.floor((total_width * 1.0 ) / columns)) output.write( str (n).center(col_width, fill)) last_row = row print output.getvalue() print '-' * total_width print return data = random.sample( range ( 1 , 8 ), 7 ) print 'data: ' , data show_tree(data) |
打印结果
1
2
3
4
5
6
7
|
data: [3, 2, 6, 5, 4, 7, 1] 3 2 6 5 4 7 1 ------------------------- heapq.heappush(heap, item) |
push一个元素到heap里, 修改上面的代码
1
2
3
4
5
6
7
8
|
heap = [] data = random.sample( range ( 1 , 8 ), 7 ) print 'data: ' , data for i in data: print 'add %3d:' % i heapq.heappush(heap, i) show_tree(heap) |
打印结果
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
data: [6, 1, 5, 4, 3, 7, 2] add 6: 6 ------------------------------------ add 1: 1 6 ------------------------------------ add 5: 1 6 5 ------------------------------------ add 4: 1 4 5 6 ------------------------------------ add 3: 1 3 5 6 4 ------------------------------------ add 7: 1 3 5 6 4 7 ------------------------------------ add 2: 1 3 2 6 4 7 5 ------------------------------------ |
根据结果可以了解,子节点的元素大于父节点元素。而兄弟节点则不会排序。
heapq.heapify(list)
将list类型转化为heap, 在线性时间内, 重新排列列表。
1
2
3
4
5
|
print 'data: ' , data heapq.heapify(data) print 'data: ' , data show_tree(data) |
打印结果
1
2
3
4
5
6
7
8
|
data: [2, 7, 4, 3, 6, 5, 1] data: [1, 3, 2, 7, 6, 5, 4] 1 3 2 7 6 5 4 ------------------------------------ heapq.heappop(heap) |
删除并返回堆中最小的元素, 通过heapify() 和heappop()来排序。
1
2
3
4
5
6
7
8
9
10
11
12
|
data = random.sample( range ( 1 , 8 ), 7 ) print 'data: ' , data heapq.heapify(data) show_tree(data) heap = [] while data: i = heapq.heappop(data) print 'pop %3d:' % i show_tree(data) heap.append(i) print 'heap: ' , heap |
打印结果
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
|
data: [4, 1, 3, 7, 5, 6, 2] 1 4 2 7 5 6 3 ------------------------------------ pop 1: 2 4 3 7 5 6 ------------------------------------ pop 2: 3 4 6 7 5 ------------------------------------ pop 3: 4 5 6 7 ------------------------------------ pop 4: 5 7 6 ------------------------------------ pop 5: 6 7 ------------------------------------ pop 6: 7 ------------------------------------ pop 7: ------------------------------------ heap: [1, 2, 3, 4, 5, 6, 7] |
可以看到已排好序的heap。
heapq.heapreplace(iterable, n)
删除现有元素并将其替换为一个新值。
1
2
3
4
5
6
7
8
9
|
data = random.sample( range ( 1 , 8 ), 7 ) print 'data: ' , data heapq.heapify(data) show_tree(data) for n in [ 8 , 9 , 10 ]: smallest = heapq.heapreplace(data, n) print 'replace %2d with %2d:' % (smallest, n) show_tree(data) |
打印结果
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
data: [7, 5, 4, 2, 6, 3, 1] 1 2 3 5 6 7 4 ------------------------------------ replace 1 with 8: 2 5 3 8 6 7 4 ------------------------------------ replace 2 with 9: 3 5 4 8 6 7 9 ------------------------------------ replace 3 with 10: 4 5 7 8 6 10 9 ------------------------------------ |
heapq.nlargest(n, iterable) 和 heapq.nsmallest(n, iterable)
返回列表中的n个最大值和最小值
1
2
3
4
5
6
|
data = range ( 1 , 6 ) l = heapq.nlargest( 3 , data) print l # [5, 4, 3] s = heapq.nsmallest( 3 , data) print s # [1, 2, 3] |
PS:一个计算题
构建元素个数为 K=5 的最小堆代码实例:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
#!/usr/bin/env python # -*- encoding: utf-8 -*- # Author: kentzhan # import heapq import random heap = [] heapq.heapify(heap) for i in range ( 15 ): item = random.randint( 10 , 100 ) print "comeing " , item, if len (heap) > = 5 : top_item = heap[ 0 ] # smallest in heap if top_item < item: # min heap top_item = heapq.heappop(heap) print "pop" , top_item, heapq.heappush(heap, item) print "push" , item, else : heapq.heappush(heap, item) print "push" , item, pass print heap pass print heap print "sort" heap.sort() print heap |
结果: