服务器之家

服务器之家 > 正文

Python基于最小二乘法实现曲线拟合示例

时间:2021-03-04 00:42     来源/作者:Inside_Zhang

本文实例讲述了Python基于最小二乘法实现曲线拟合。分享给大家供大家参考,具体如下:

这里不手动实现最小二乘,调用scipy库中实现好的相关优化函数。

考虑如下的含有4个参数的函数式:

Python基于最小二乘法实现曲线拟合示例

构造数据

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import numpy as np
from scipy import optimize
import matplotlib.pyplot as plt
def logistic4(x, A, B, C, D):
  return (A-D)/(1+(x/C)**B)+D
def residuals(p, y, x):
  A, B, C, D = p
  return y - logisctic4(x, A, B, C, D)
def peval(x, p):
  A, B, C, D = p
  return logistic4(x, A, B, C, D)
A, B, C, D = .5, 2.5, 8, 7.3
x = np.linspace(0, 20, 20)
y_true = logistic4(x, A, B, C, D)
y_meas = y_true + 0.2 * np.random.randn(len(y_true))

调用工具箱函数,进行优化

?
1
2
3
4
p0 = [1/2]*4
plesq = optimize.leastsq(residuals, p0, args=(y_meas, x))
            # leastsq函数的功能其实是根据误差(y_meas-y_true)
            # 估计模型(也即函数)的参数

绘图

?
1
2
3
4
5
6
7
8
plt.figure(figsize=(6, 4.5))
plt.plot(x, peval(x, plesq[0]), x, y_meas, 'o', x, y_true)
plt.legend(['Fit', 'Noisy', 'True'], loc='upper left')
plt.title('least square for the noisy data (measurements)')
for i, (param, true, est) in enumerate(zip('ABCD', [A, B, C, D], plesq[0])):
  plt.text(11, 2-i*.5, '{} = {:.2f}, est({:.2f}) = {:.2f}'.format(param, true, param, est))
plt.savefig('./logisitic.png')
plt.show()

Python基于最小二乘法实现曲线拟合示例

希望本文所述对大家Python程序设计有所帮助。

原文链接:https://blog.csdn.net/lanchunhui/article/details/50358943

相关文章

热门资讯

2020微信伤感网名听哭了 让对方看到心疼的伤感网名大全
2020微信伤感网名听哭了 让对方看到心疼的伤感网名大全 2019-12-26
yue是什么意思 网络流行语yue了是什么梗
yue是什么意思 网络流行语yue了是什么梗 2020-10-11
Intellij idea2020永久破解,亲测可用!!!
Intellij idea2020永久破解,亲测可用!!! 2020-07-29
背刺什么意思 网络词语背刺是什么梗
背刺什么意思 网络词语背刺是什么梗 2020-05-22
苹果12mini价格表官网报价 iPhone12mini全版本价格汇总
苹果12mini价格表官网报价 iPhone12mini全版本价格汇总 2020-11-13
返回顶部