本文实例为大家分享了tensorflow神经网络实现mnist分类的具体代码,供大家参考,具体内容如下
只有两层的神经网络,直接上代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
|
#引入包 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #引入input_data文件 from tensorflow.examples.tutorials.mnist import input_data #读取文件 mnist = input_data.read_data_sets( 'F:/mnist/data/' ,one_hot = True ) #定义第一个隐藏层和第二个隐藏层,输入层输出层 n_hidden_1 = 256 n_hidden_2 = 128 n_input = 784 n_classes = 10 #由于不知道输入图片个数,所以用placeholder x = tf.placeholder( "float" ,[ None ,n_input]) y = tf.placeholder( "float" ,[ None ,n_classes]) stddev = 0.1 #定义权重 weights = { 'w1' :tf.Variable(tf.random_normal([n_input,n_hidden_1],stddev = stddev)), 'w2' :tf.Variable(tf.random_normal([n_hidden_1,n_hidden_2],stddev = stddev)), 'out' :tf.Variable(tf.random_normal([n_hidden_2,n_classes],stddev = stddev)) } #定义偏置 biases = { 'b1' :tf.Variable(tf.random_normal([n_hidden_1])), 'b2' :tf.Variable(tf.random_normal([n_hidden_2])), 'out' :tf.Variable(tf.random_normal([n_classes])), } print ( "Network is Ready" ) #前向传播 def multilayer_perceptrin(_X,_weights,_biases): layer1 = tf.nn.sigmoid(tf.add(tf.matmul(_X,_weights[ 'w1' ]),_biases[ 'b1' ])) layer2 = tf.nn.sigmoid(tf.add(tf.matmul(layer1,_weights[ 'w2' ]),_biases[ 'b2' ])) return (tf.matmul(layer2,_weights[ 'out' ]) + _biases[ 'out' ]) #定义优化函数,精准度等 pred = multilayer_perceptrin(x,weights,biases) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = pred,labels = y)) optm = tf.train.GradientDescentOptimizer(learning_rate = 0.001 ).minimize(cost) corr = tf.equal(tf.argmax(pred, 1 ),tf.argmax(y, 1 )) accr = tf.reduce_mean(tf.cast(corr, "float" )) print ( "Functions is ready" ) #定义超参数 training_epochs = 80 batch_size = 200 display_step = 4 #会话开始 init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) #优化 for epoch in range (training_epochs): avg_cost = 0. total_batch = int (mnist.train.num_examples / batch_size) for i in range (total_batch): batch_xs,batch_ys = mnist.train.next_batch(batch_size) feeds = {x:batch_xs,y:batch_ys} sess.run(optm,feed_dict = feeds) avg_cost + = sess.run(cost,feed_dict = feeds) avg_cost = avg_cost / total_batch if (epoch + 1 ) % display_step = = 0 : print ( "Epoch:%03d/%03d cost:%.9f" % (epoch,training_epochs,avg_cost)) feeds = {x:batch_xs,y:batch_ys} train_acc = sess.run(accr,feed_dict = feeds) print ( "Train accuracy:%.3f" % (train_acc)) feeds = {x:mnist.test.images,y:mnist.test.labels} test_acc = sess.run(accr,feed_dict = feeds) print ( "Test accuracy:%.3f" % (test_acc)) print ( "Optimization Finished" ) |
程序部分运行结果如下:
1
2
3
4
5
6
7
8
9
10
11
12
|
Train accuracy: 0.605 Test accuracy: 0.633 Epoch: 071 / 080 cost: 1.810029302 Train accuracy: 0.600 Test accuracy: 0.645 Epoch: 075 / 080 cost: 1.761531130 Train accuracy: 0.690 Test accuracy: 0.649 Epoch: 079 / 080 cost: 1.711757494 Train accuracy: 0.640 Test accuracy: 0.660 Optimization Finished |
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/Missayaaa/article/details/80065319