首先输入边和边的权重,随后画出节点位置,根据权重大小划分实边和虚边
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
|
#coding:utf-8 #!/usr/bin/env python """ An example using Graph as a weighted network. """ __author__ = """Aric Hagberg (hagberg@lanl.gov)""" try : import matplotlib.pyplot as plt except : raise import networkx as nx G = nx.Graph() #添加带权边 G.add_edge( 'a' , 'b' ,weight = 0.6 ) G.add_edge( 'a' , 'c' ,weight = 0.2 ) G.add_edge( 'c' , 'd' ,weight = 0.1 ) G.add_edge( 'c' , 'e' ,weight = 0.7 ) G.add_edge( 'c' , 'f' ,weight = 0.9 ) G.add_edge( 'a' , 'd' ,weight = 0.3 ) #按权重划分为重权值得边和轻权值的边 elarge = [(u,v) for (u,v,d) in G.edges(data = True ) if d[ 'weight' ] > 0.5 ] esmall = [(u,v) for (u,v,d) in G.edges(data = True ) if d[ 'weight' ] < = 0.5 ] #节点位置 pos = nx.spring_layout(G) # positions for all nodes #首先画出节点位置 # nodes nx.draw_networkx_nodes(G,pos,node_size = 700 ) #根据权重,实线为权值大的边,虚线为权值小的边 # edges nx.draw_networkx_edges(G,pos,edgelist = elarge, width = 6 ) nx.draw_networkx_edges(G,pos,edgelist = esmall, width = 6 ,alpha = 0.5 ,edge_color = 'b' ,style = 'dashed' ) # labels标签定义 nx.draw_networkx_labels(G,pos,font_size = 20 ,font_family = 'sans-serif' ) plt.axis( 'off' ) plt.savefig( "weighted_graph.png" ) # save as png plt.show() # display |
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/ztf312/article/details/47664515