每当你对excel文件进行更改保存,web页面还能够实时进行更新,确实挺不错的。
streamlit的文档和教程地址如下。
https://docs.streamlit.io/en/stable/
https://streamlit.io/gallery
相关的api使用可以去文档中查看,都有详细的解释。
项目一共有三个文件,程序、图片、excel表格数据。
数据情况如下,某公司年底问卷调查(虚构数据),各相关部门对生产部门在工作协作上的打分情况。
有效数据总计约676条,匿名问卷,包含问卷填写人所属部门,年龄,评分。
最后对各部门参与人数进行汇总计数(右侧数据)。
首先来安装一下相关的python库,使用百度源。
1
2
3
4
5
6
7
8
|
# 安装streamlit pip install streamlit - i https: / / mirror.baidu.com / pypi / simple / # 安装plotly express pip install plotly_express = = 0.4 . 0 - i https: / / mirror.baidu.com / pypi / simple / # 安装xlrd pip install xlrd = = 1.2 . 0 - i https: / / mirror.baidu.com / pypi / simple / |
因为我们的数据文件是xlsx格式,最新版的xlrd,只支持xls文件。
所以需要指定xlrd版本为1.2.0,这样pandas才能成功读取数据。
命令行终端启动网页。
1
2
3
4
5
|
# 命令行终端打开文件所在路径 cd excel_webapp # 运行网页 streamlit run app.py |
成功以后会有提示,并且浏览器会自动弹出网页。
如果没有自动弹出,可以直接访问上图中的地址。
得到结果如下,一个数据可视化网页出来了。
目前只能在本地访问查看,如果你想放在网上,可以通过服务器部署,需要自行去研究~
下面我们来看看具体的代码吧。
1
2
3
4
5
6
7
8
9
10
11
|
import pandas as pd import streamlit as st import plotly.express as px from pil import image # 设置网页名称 st.set_page_config(page_title = '调查结果' ) # 设置网页标题 st.header( '2020年调查问卷' ) # 设置网页子标题 st.subheader( '2020年各部门对生产部的评分情况' ) |
导入相关的python包,pandas处理数据,streamlit用来生成网页,plotly.express则是生成图表,pil读取图片。
设置了网页名称,以及网页里的标题和子标题。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
# 读取数据 excel_file = '各部门对生产部的评分情况.xlsx' sheet_name = 'data' df = pd.read_excel(excel_file, sheet_name = sheet_name, usecols = 'b:d' , header = 3 ) # 此处为各部门参加问卷调查人数 df_participants = pd.read_excel(excel_file, sheet_name = sheet_name, usecols = 'f:g' , header = 3 ) df_participants.dropna(inplace = true) # streamlit的多重选择(选项数据) department = df[ '部门' ].unique().tolist() # streamlit的滑动条(年龄数据) ages = df[ '年龄' ].unique().tolist() |
读取excel表格数据,并且得出年龄分布以及部门情况,一共是有5个部门。
添加滑动条和多重选择的数据选项。
1
2
3
4
5
6
7
8
9
10
|
# 滑动条, 最大值、最小值、区间值 age_selection = st.slider( '年龄:' , min_value = min (ages), max_value = max (ages), value = ( min (ages), max (ages))) # 多重选择, 默认全选 department_selection = st.multiselect( '部门:' , department, default = department) |
结果如下。
年龄是从23至65,部门则是市场、物流、采购、销售、财务这几个。
由于滑动条和多重选择是可变的,需要根据过滤条件得出最终数据。
1
2
3
4
5
6
7
8
9
10
11
|
# 根据选择过滤数据 mask = (df[ '年龄' ].between( * age_selection)) & (df[ '部门' ].isin(department_selection)) number_of_result = df[mask].shape[ 0 ] # 根据筛选条件, 得到有效数据 st.markdown(f '*有效数据: {number_of_result}*' ) # 根据选择分组数据 df_grouped = df[mask].groupby(by = [ '评分' ]).count()[[ '年龄' ]] df_grouped = df_grouped.rename(columns = { '年龄' : '计数' }) df_grouped = df_grouped.reset_index() |
得到数据便可以绘制柱状图了。
1
2
3
4
5
6
7
8
|
# 绘制柱状图, 配置相关参数 bar_chart = px.bar(df_grouped, x = '评分' , y = '计数' , text = '计数' , color_discrete_sequence = [ '#f63366' ] * len (df_grouped), template = 'plotly_white' ) st.plotly_chart(bar_chart) |
使用plotly绘制柱状图。
当我们在网页调整选项时,有效数据和柱状图也会随之变化。
此外streamlit还可以给网页添加图片和交互式表格。
1
2
3
4
5
6
7
|
# 添加图片和交互式表格 col1, col2 = st.beta_columns( 2 ) image = image. open ( 'survey.jpg' ) col1.image(image, caption = 'designed by 小f / 法纳斯特' , use_column_width = true) col2.dataframe(df[mask], width = 300 ) |
得到结果如下。
可以看到表格有一个滑动条,可以使用鼠标滚轮滚动查看。
最后便是绘制一个饼图啦!
1
2
3
4
5
6
|
# 绘制饼图 pie_chart = px.pie(df_participants, title = '总的参加人数' , values = '人数' , names = '公司部门' ) st.plotly_chart(pie_chart) |
结果如下。
各部门参加问卷调查的人数,也是一个可以交互的图表。
将销售、市场、物流取消掉,我们就能看出财务和采购参加问卷调查的人数占比情况。
好了,本期的分享就到此结束了,有兴趣的小伙伴可以自行去实践学习。
代码及数据:链接:https://pan.baidu.com/s/1ark7ydvb4o8v678fbpnbnw 密码:z3m9
以上就是python使用streamlit库制作web可视化页面的详细内容,更多关于python 制作web可视化页面的资料请关注服务器之家其它相关文章!
原文链接:https://mp.weixin.qq.com/s/7Ljbyaw7RqtOnlzB0cOsAw